Calcium time course as a signal for spike-timing-dependent plasticity.
نویسندگان
چکیده
Calcium has been proposed as a postsynaptic signal underlying synaptic spike-timing-dependent plasticity (STDP). We examine this hypothesis with computational modeling based on experimental results from hippocampal cultures, some of which are presented here, in which pairs and triplets of pre- and postsynaptic spikes induce potentiation and depression in a temporally asymmetric way. Specifically, we present a set of model biochemical detectors, based on plausible molecular pathways, which make direct use of the time course of the calcium signal to reproduce these experimental STDP results. Our model features a modular structure, in which long-term potentiation (LTP) and depression (LTD) components compete to determine final plasticity outcomes; one aspect of this competition is a veto through which appropriate calcium time courses suppress LTD. Simulations of our model are also shown to be consistent with classical LTP and LTD induced by several presynaptic stimulation paradigms. Overall, our results provide computational evidence that, while the postsynaptic calcium time course contains sufficient information to distinguish various experimental long-term plasticity paradigms, small changes in the properties of back-propagation of action potentials or in synaptic dynamics can alter the calcium time course in ways that will significantly affect STDP induction by any detector based exclusively on postsynaptic calcium. This may account for the variability of STDP outcomes seen within hippocampal cultures, under repeated application of a single experimental protocol, as well as for that seen in multiple spike experiments across different systems.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRole of STDP in regulation of neural timing networks in human: a simulation study
Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...
متن کاملRate and Pulse Based Plasticity Governed by Local Synaptic State Variables
Classically, action-potential-based learning paradigms such as the Bienenstock-Cooper-Munroe (BCM) rule for pulse rates or spike timing-dependent plasticity for pulse pairings have been experimentally demonstrated to evoke long-lasting synaptic weight changes (i.e., plasticity). However, several recent experiments have shown that plasticity also depends on the local dynamics at the synapse, suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 93 5 شماره
صفحات -
تاریخ انتشار 2005